skip to main content


Search for: All records

Creators/Authors contains: "McGee, Sean L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We analyse 33 Type I superluminous supernovae (SLSNe) taken from Zwicky Transient Facility (ZTF)’s Bright Transient Survey to investigate the local environments of their host galaxies. We use a spectroscopic sample of galaxies from the Sloan Digital Sky Survey (SDSS) to determine the large-scale environmental density of the host galaxy. Noting that SLSNe are generally found in galaxies with low stellar masses, high star formation rates (SFRs), and low metallicities, we find that SLSN hosts are also rarely found within high-density environments. Only $3\substack{+9 \\ -1}$ per cent of SLSN hosts were found in regions with two or more bright galaxies within 2 Mpc. For comparison, we generate a sample of 662 SDSS galaxies matched to the photometric properties of the SLSN hosts. This sample is also rarely found within high-density environments, suggesting that galaxies with properties required for SLSN production favour more isolated environments. Furthermore, we select galaxies within the IllustrisTNG simulation to match SLSN host galaxy properties in colour and stellar mass. We find that the fraction of simulated galaxies in high-density environments quantitatively match the observed SLSN hosts only if we restrict to simulated galaxies with metallicity 12 + log (O/H) ≤ 8.12. In contrast, limiting to only the highest specific star formation rate (sSFR) galaxies in the sample leads to an overabundance of SLSN hosts in high-density environments. Thus, our measurement of the environmental density of SLSN host galaxies appears to break the degeneracy between low metallicity and high sSFR as the driver for SLSN hosts and provides evidence that the most constraining factor on SLSN production is low metallicity.

     
    more » « less
  2. ABSTRACT

    We measure the optical variability in ∼16 500 low-redshift (z ∼ 0.1) galaxies to map the relations between active galactic nucleus (AGN) activity and galaxy stellar mass, specific star formation rate, half-light radius, and bulge-to-total ratio. To do this, we use a reduced χ2 variability measure on >10 epoch light curves from the Zwicky Transient Facility and combine with spectroscopic data and derive galaxy parameters from the Sloan Digital Sky Survey. We find that below the stellar mass of 1011 M⊙, galaxies classed as star-forming via the Baldwin–Phillips–Terlevich diagram have higher mean variabilities than AGN or composite galaxies. Revealingly, the highest mean variabilities occur in star-forming galaxies in a narrow range of specific star formation rate: −11 < log(sSFR/yr−1) < −10. In very actively star-forming galaxies [log(sSFR/yr−1) > −10], the reduced variability implies a lack of instantaneous correlation with star formation rate. Our results may indicate that a high level of variability, and thus black hole growth, acts as a precursor for reduced star formation, bulge growth, and revealed AGN-like emission lines. These results add to the mounting evidence that optical variability can act as a viable tracer for low-mass AGNs and that such AGNs can strongly affect their host galaxy.

     
    more » « less